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TYPES OF TILLAGE

Soil tiflage is an ancient practice that was originally used to eradicate weeds and loosen the soil
for planting seeds (Lal, 2001). In modern agriculture, tillage is still performed for controlling weeds,
insects, and diseases; improving the soil’s physical condition by loosening compacted layers and
enhancing soil warming in spring; incorporating fertilizer, herbicide, and plant residues; conserving
soil and water; and preparing a quality seedbed (Jones et al., 1990). The type of tillage employed
should be designed to achieve a specific set of goals. During the past several decades, conservation
tillage, and, particularly, no tillage have been increasingly utilized, as the need for inversion tillage
has been reevaluated. The susceptibility of inverted soil to wind and water erosion has highlighted
the environmental and production threats to sustainability (Figure 8.1). The term conservation
tillgge includes a variety of systems, all designed 10 minimize residue incorporation with the intent
of abating soil erosion. According to the definition of the term by the United States Department
of Agriculture (USDA), >30% residue cover must be on the soil surface immediately after planting
(Figure 8.2). A major part of this chapter compares the influences of conservation and inversion
tillage on soil organic matter,

Tillage practices range from the very simple to the very complex. Buckingham (1976) and
Swinford (1994) give excellent descriptions of the types of tillage operations and their intended
use. This chapter focuses on four groups of tillage practices affecting soil organic matter dynamics:

227
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FIGURE 8.1 Wind and water crosion are serious threats to the sustainability of agriculture. Both these erosive
forces preferentially displace the lighter organic matter fraction from the soil surface, resulting in a decline -
of long-term productivity. Photos depict water erosion in the Georgia Piedmont and wind erosion in the loess
hills of Nebraska. ;

T
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FIGURE 8.2 Alfalfa is an excellent sod component of long-term rotations that can help abate erosion, -
Traditionally, sod was broken by plowing and smoothing before planting maize, leaving the soil surface
exposed to erosive forces (left). With no tillage, sod is killed with herbicides and muize can be grown without :
soil disturbance (right), Photes from eastern Nebraska. '

moldboard plow, shallow, ridge, and no tillage, The moldboard plow was perhaps the most widely
used primary tillage implement during the early part of the 20th century (Allmaras et al., 2000
The moldboard plow inverts soil to a depth of usually 15 to 30 c¢m, resulting in complete burial of
aboveground crop residues. Secondary tillage operations of disking or harrowing, or both, are often
needed to prepare a suitable seedbed following plowing, ;
Shallow tillage is accomplished by using a wide diversity of implements to scarify the soil
surface. One primary tillage tool that has replaced the moldboard plow in some regions is the
chisel plow. Although the working depth of the chisel plow might be similar to that of the
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moldboard plow, the degree of soil inversion with the chisel plow is much less. In semiarid
regions with small grains as the main crop, primary tillage operations can be accomplished
with an offset disk or field cultivator. Working depth of these implements is often less than that
with plow tools, e.g., 10 to 15 co depth. The extent of residue incorporation depends on the
number of passes performed.

A conservation-tillage method with greater opportunities for controlling traffic is ridge
tillage. The extent of soil disturbance varies greatly with the type of equipment and number of
cultivations with this system. Ridges are typically formed, the tops scraped off to create a clean
seedbed, and ridges reshaped during summer caltivation. The negative effects of machinery
traffic can be limited to the same rows year after year so that the majority of the field is not
compacted.

No tillage relies completely on herbicides and management to control weeds. Planting
operations are typically the only disturbance to the soil surface.

TYPES OF RESIDUE MANAGEMENT

If residues of various crops are considered a by-product without much value and a hindrance to
future production, they can be removed from the field by burning. Residues can also be removed
from the field as valuable fodder for animals or as materials for construction. Removal of residues
either by burning or by harvest has important implications for soil organic matter dynamics. Crop
residues are rich in organic C and N, and therefore their removal is a loss of input to the soil,
resulting almost always in a decline in soil organic matter compared with retention of residues
(Saffigna et al., 1989; Dalal et al., 1991; Kapkiyat et al., 1999),

Residues left in the field ultimately undergo decomposition with a majority of the C
respired back to the atmosphere as CO, and a smaller fraction retained as soil organic matter.
The rate and extent of residue transformation into soil organic matter depends on the type,
quantity, and quality of residues produced and how and when residues are manipulated. The
quantity of residucs depends on climatic, soil, and fertility variables. The quality of residues
depends on the plant species (¢.g., small grain straw low in N vs. legume cover crop forage
rich in N} and developmental stage when killed. Residues of primary crops can be cut,
shredded, or feft standing in the field. Cover crops can be allowed to mature, mowed, rolled,
or terminated with herbicides. No-tillage munagement with a dense mat of previous crop
resicues can be effective at controlling erosion and weeds and moderate temperature and
moisture fluctuations (Figure 8.3).

FICURE 8.3 Cotion planted with no tillage following harvest of barley in the Georgia Piedmont.
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EFFECT OF TILLAGE ON PLANT GROWTH

Agronomic production ot food and fiber is a vocation that brings both joys and challenges to those
catled to be stewards of the land (Figure 8.4). For those who farm the land, nature can be both
friend and foe. With cure and management, the fruits of the earth can be harvested in bounty,
However, the desire to obtain more from the land is often limited by the harsh realities of weather
and pestilence. Those who believe that they know their system are often taught new lessons by
nature, neighbors, accountants, or the government. Modern agricuttural production is a complicated
system involving natural resources, technology, finance, ingenuity, labor, and social fabric. There
will always be different systems of agricultural production requiring different solutions to problems,

Seil erosion is a natural disaster that damages resources in a slow but continuous, and, occa-
sionally, dramatic manner. Exposure of the fragile surface soil to the erosive forces of wind and
water without profective cover has led to long-lerm soil, water, and air degradation {Trimble, 1974).
Conservation tillage systems attempt to mimic nature by allowing residues that fali to the surface
to remain there without mechanical incorporation. Seeds can then be planted directly through this
mulch layer with minimal disturbance to the protective surface cover. This approach was partly
made possible with the development of herbicides, which reduced one of the greatest needs for
tillage, i.e., weed control.

Changes in micreclimate under conservilion compared with inversion tillage systems result in
more waler available tor crop uptake by (1) getting more precipitation to infiltrate soil rather than
run off of the land and (2) reducing evaporation of water from the soil surface during intervals
between precipitation events (Lascano et al., 1994). Lack of tillage, however, could result in
cxcessive compaction of soil, especially 1n systems with heavy equipment and random traffic
patterns. In many studies, soil immediatcly below the surface becomes compacted during early
adoption of no tillage, a process that could limit root growth and development. In the long term,
however, freczing—thawing and bioperturbation leosen soil under no tillage compared with plow
tillage (Voorhees and Lindstrom, 1984). It is also possible that old root channels and worm holes
that remain intact without soil disturbance enhance water infiltration and root growth without a
major change in bulk density.

FIGURE 8.4 Statue of St. Isidore, the patron saint of farmers, in Bow Valley, Nebraska.
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FIGURE 8.5 Side-by-side long-term experiment ncar College Station, TX, compuaring conventional disk-and-
bed tillage of sorghum on Jeft with no tillage of sorghum on right.

Many short-term studics and a few long-term studies have evaluated the effect of tillage system
on plant productivity (Figure 8.5). In 33 comparisons with small grains, yield under no-tillage
systems was equivalent to that under shaflow-tiltage systems (Table 8.1). However, yield under
plow tillage was, on average, lower than under shallow or no tillage. At many of the senmarid
locations, water conservation with shallow- or no-tillage management probably contributed to
improved yield. From a compilation of studies with various crops other than maize or small grains,
similar effects of tillage systems on yield occurred (Table 8.2). However, from a compilation of
studies with maize, tillage systemn had no overall effect on yield (Table 8.3}, Individual experiments
might have shown significant reductions or increases in yield with adoption of conservation tillage,
but on average there was no negative or positive effect of conservation tillage on maize yield. The
lack of tillage system effect on yield might be important in promoting conservation tillage to control
soil crosion and improve water quality in a particular watershed or region. No yield reduction can
~ make conservation tillage attractive because, other than the initial investment in modifying or
purchasing a conservation-tillage planter, operating costs are often lower with conservation-tillage
systems than with conventional-tillage systems (Jones et al., 1990).

In the long term, accumulation of soil organic matter under conservation-tillage systems should
lead to an increase in the storage and potential availability of nutrients. On a Fluventic Ustochrept
in Texas. the N fertilizer required to achieve 95% of maximum sorghum grain yield was 40 10 60%
higher during the first year of no-tillage management compared with conventional tillage (Figure
8.6). With time, however, the N fertilizer required became similar between tillage systems. It could
be expected that during the second decade of no-tillage management, N fertilizer requirement would
be lower than under conventional tillage. Although higher initial fertilizer expenditures might be
needed to achieve optimum yield with no-tillage management because of sequestration of nutrients
into organic matter, the long-term benefits of sustained nutrient storage, enhanced water infiltration
and retention, improved soil biological activity, and more stable production can more than offset
the initial costs. Cropping systems that include legumes with substantial biological N-fixation could
help offset any additional requirement for N fertilizer inputs in conservation-tillage systems. In a
long-term tillage study on a Typic Fragiudalf in Ohio, maize and soybean yields tended (o increase
with time (18 years) under no tillage compared with conventional tillage (Dick et al., 1991). On a
very poorly drained Mollic Ochraqualf, yields were lower under no tillage than under conventional
tillage during carly years, but became similar between tillage systems with time, Similar positive
changes in yield under no tillage compared with conventional tillage occurred with time in long-
term studies in Maryland and Kentucky (Bandel and Meisinger, 1993; Ismail et al.. 1994). Other
studies that indicate negative yield effects of conservation tillage compared with conventional tiflage
have often been limited by weed control (Brandt, 1992), diseases due to crop sequencing (Dick et
al., 1991), or poor seedling establishment duc to straw management (Cannell and Hawes, 1994).
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— Sorghum
£ Continucus Rotated with
o Sorghum Wheat/Soybean
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" FIGURE 8.6 Calculated N fertilizer requirement to achieve 923% of maximum sorghum grain yield each vear
during the first 10 years of a long-term tillage study in southcentral Texas. Yield responsc was derived from
N fertilizer application rates of 0, 4.5, 9.0, and 13.5 g m'? year'. {Data from Franzluebbers, A.J. et al. 1995a.
Planr Soil 173:55-65.)

The impltcation from this compilation of studics 1s that higher or equal crop yield under
conservalion tillage compared with inversion tillage will lead to, on average, higher or equal C
inputs into the soil systern.

EFFECTS OF DISTURBANCE/TILLAGE ON SOIL
ORGANIC MATTER

Deptd DisTRIBUTION OF ORGANIC MATTER

Inversion tillage mixes organic residues with soil at deeper depths. The type of tillage tool greatly
influences the eventual location of aboveground residues within the soil profile. Allmaras et al.
(1996) showed that moldboard plowing 1o a depth of 25 ¢cm buried 70% of the aboveground oat
. Tesidue at a depth of 12-24 cm, whereas chisel plowing Lo a depth of 15 ¢m left nearly 60% of
the residue at a depth of 0-6 cm (Figure 8.7). Obviocusly, no tillage would leave nearly all of the
. residue at or above the soil surface. Because plant residues contribute greatly 1o subsequent soil
organic matter formation, the placement of plant residues with different tillage practices is of utmost
importance for understanding the depth distribution of soil organic maticr. '

With repeated inversion tillage, soil organic matter becomes uniformly distributed within the
plowed layer (Figure 8.8). The fate of organic matter mixed into soil vs. that left on the soil surface
" depends on the prevailing climatic conditions. In general, however, the environment within soif is
more buffered against extremes in moisture and temperature than that at the soil surface, Higher
moisture content in soil than on the soil surface ts probably the higgest factor that leads to greater
. decomposition of organic matter in tilled soil (Franzluebbers et al., 1996a).

Surface-pltaced crop residues under conservation tillage systems experience frequent drying
and rewetting, depending on precipitation events. Although decomposition of surface-placed resi-
dues is slower than that of buried residues (Brown and Dickey, 1970; Douglas et al., 1980; Wilson
and Hargrove, 1986: Ghidey and Alberts, 1993), N concentration of remaining residues can increase
with time relative 1o buried residues (Varco et al., 1993; Franzluebbers et al., 1994¢). Typically,
higher N concentration residues leads to faster decomposition of residues (Vigil and Kissel, 1991}.
- This contradiction suggests that frequent drying and rewetting of surface-placed residues increases
- the resistance of certain N compounds o microbial decomposition (Franzluebbers ct al., 1994c),
. which leads to higher total N accumulation in the surface of no-tillage soils. However, during
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Relative QOat Residue (%)

0 10 20 30 40 50 60
a T T T T T

Chisel plow
(noninversion _|
tillage)

Soil Depth (cm)

Moldboard plow
{invarsion tillage)
-30 1 b L ! |

FIGURE 8.7 Oat residue distribution in soil following moldboard plow and chisel plow in Minnesota. (Data
from Allmaras, R.R. et al. 1996. Soil Sci. Soc. Am. J. 60:1209-1216.)

Scil Organic C Mineralizable C
(kg:m™?) (g COp-C-m3-d )
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O No tilage
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FIGURE 8.8 Depth distribution of soil organic C and mineralizable C at the end of 9 years under conventional
disk-and-bed tillage and no tillage in southcentral Texas. * indicates significance between tillage systems at
p < 0.1, (Data from Franziuebbers, A.J. et al. 1994a. Soil Sci. Soc. Am. J. 58:1639-1645)

decomposition of buried and surface-placed canola residues, the poction of total N remaining as
lignin-bound N increased, but was not different between the two environments {(Figure 8.9). More
work is needed to understand the transformations that occur during decomposition of various crop
residues under different micro- and macroclimatic conditions.

Organic malter has a direct impact on the density of soil and therefore on the content of organic
muatter within a given volume of soil. Because conservation tillage systems leave residues near the
soil surface, most investigations report a substantial change in soil organic matter in surface soil
as compared with inversion-tillage systems. However, calculation of net change in soil organic

matter with a change in tillage management should be made to at least the depth of the tillage tool -
in both systems. At the end of 4 years of management in a Typic Kanhapludult in Georgia, soil

organic C under no tillage was higher than under disk tillage (15-cm depth) at a depth of 0 to 2.5
cm, but not different at lower depths (Figure 8.10). C content was 81% higher (although C
concentration was 95% higher) with no tillage than with disk tillage at a depth of 0 to 2.5 cm.
Similarly, C content was only 2% lower with no tillage (C concentration was 14% lower) than with
disk tillage at a depth of 2.5 to 7.5 cm. Summation of C content to a depth of 15 cm indicated no
difference between tillage systems because of counteracting effects of residue placement at lower

L T e W
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O Surface
02+ @ Buried - 0.2

N uub se N 210l
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FIGURE 8.9 Canola residue mass and the fraction of total N in remaining residue as lignin-bound N during
field incubation in Alberta, Canada, when placed on the surface or buried at 10 em. (Data from Franzluehbers,
A, and Arshad, M.A. 1996a. Sail Sci. Soc. Am. J. 60:1422-1427)

Carbon Content

Soil Organic C  Bulk Density (grm™)
(9-kg™ {Mg-m™%) DT NT
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FIGURE 8.10 Depth distribution of suil urganic C concentration, soil bulk density, and C conlent al the end
of 4 years under conventional disk tillage and no tiliage in the Georgia Piedmont. * indicates significance
between tillage systems at p < 0.1. (Data from Franzluebbers, A.J. et al. 1999, Soil Sci. Soc. Am. J. 63:349-355.)

depths with disk tillage. However, including surface residue C with soil organic C to a depth of
15 ¢m resulted in significantly greater storage of C under no tillage compared with disk tillage.
Stratification of soil erganic matter pools with depth under conservation tillage systems has
consequences on soil functions beyond that of potentially sequestering more C in soil. The soil
surfacc is the vital interface that receives much of the fertilizers and pesticides applied to cropland,
recetves the intense impact of raiufall, and partitions the fluxes of gases and water into and out of
soil. Surface organic matter is therefore essential to erosion control, water infiltration, and conser-
vation of nutrients, all important soil functions. No-tillage management of a 2.7-ha cropped water-
shed for 24 years on a Typic Kanhapludult in Georgia reduced water runoff to 22 mm year™
compared with 180 mm year under previous management of the watershed under conventional
inversion tillage (Endale et al., 2000). Soil loss was even more dramatically reduced with no-tiflage
management (3 vs. 129 kg ha! mmn! runoff). A greenhouse study to separate the short- and long-
lerm effects of disturbance on soil hydraulic properties of the same soil revealed that doubling soil
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organic C content in freshly tifled soil improved water infiltration by 27% (Franzluebbers, 2002b),
However, water infiltration was 3.3 times higher in intact cores from long-term conservation tillage
with a high degree of soil organic matter stratification compared with iniact cores from a long-
term conveniionally lilled soil (but untiled during the previous 14 months) with a low degree of
soil organic matter stratification.

Stratification ol soil organic matter with conservation titlage depends on the inherent level
of soil organic matter, intensity of disturbance, type of cropping system, and length of time,
In an analysis of stratification ratios (soil organic C in the surface 5 cm divided by that at
12.5- to 20-cr depth) under no tillage in three different ecoregions, there were greater
differences in the siratification of soil organic C between tillage systems in hot, wel, low soil
organic matter environments than in cold, dry, high soil organic matter environments (Figure
%.11}. Soils with low inherent levels of organic matter can be the most functionally improved
with conservation tillage, despite modest or no change in total standing stock of soil organic
C within the rooting zone. Alternatively, soils with inherently high soil Organic matter even
under conventional-titlage management would likely obtain relatively little additional soil
functional benelit with adoption of conservation tillage, because inherent soil propertics would
be at a high level.

Stratification ratio of particulate organic C in a Typic Kanhapludult in Georgia decreased along
a disturbance gradient created by tillage tools with different inversion characteristics (Figure 8.12).
Less intensive mixing of soil preserves crop residues and soil organic matier near the soil surface,
where it has the most beneficial impact. Stratification of mineralizable C in a Fluventic Ustochrept
in Texas increused with increasing cropping intensity under conventional tillage, but was always
higher under no tillage (Figure 8.13). More intensive cropping increases the quantity of residues
produced, which can lead to higher soil organic matter. Stratification ratio of soil erganic C (0- to
2.5-cm divided by 12.5- to 20-cm depth) in an Aquic Hapludult in Maryland was 1.0 under plow
tillage and increased with time under no tillage to 1.1 at 1 year, 1.4 at 2 years, and 1.5 at 3 years
{McCarty et al., 1998).

o 3
T 1 Conventional tillage
oS
o BRI No tillage
B8 2 ]
5
o~
e
4
c — -
sg
sa
F50
& o B
Location Georgia Texas Alberta/BG
Annual
Precipitation (mm} 1250 980 450
Annual
Temperature (°C) 16.5 20 2
Soil Organic
C (kg m™?) 2.1 2.6 6.1

FIGURE 8.11 Stratification ratio of soil organic C under conventional and no tillage at three locations differing
in climatic characteristics and standing stock of soil organic C. *#* indicates significance between tiliage
systems at p < 0.001. (Data from Franzlucbbers, A.J. 2002a. Soil Tillage Res. 66:95-106.)
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4"\’

Stratification Ratio of Particulate
Organic C (0 to 2.5 cm: 7.5t0 15 cm)

Ic ST PP cT

Tillage Type
(Low <--- Soil Disturbance Level > High)

FIGURE 8,12 Stratification ratio of particulate organic C at the end of 4 years under four tillage systems in
the Georgia Piedmont. 1C, in-row chisel at planting; ST, shallow tillage with sweeps during the growing
season; PP, paraplow following harvest: and CT, conventional disk tillage. Bars labeled with different letters
are significantly different at p < 0.1. (Data from Franzluebbers, A.J. 200%a. Soil Tillage Res. 66:95-106.)

Stratification Ratio of Mineralizable
C{Cto5cm: 12.5 to 20 cm)

1.0 1.5 2.0
({CW) (W/S-8) (W/S})

Cropping Intensity (crops-yr)

FIGURE 8.13 Stratification ratio of mineralizable C at the end of 9 years under conventional {open bars) and
1o tillage (shaded bars) in three wheat rotation systems in southcentral Texas. CW, continuous wheat; W/S-§,
wheat/soybean—sorghum; and W/S, continuous wheat/soybean double crop. *#* indicales significance belween
tillage systems at p < 0.001. Within a tillage system, bars labeled with different letters arc significantly different
at p < 0.1. (Data from Franzluebbers, A.J. 2002a. Soil Titlage Res. 66:95-106.)

Stratification ratios of soil organic matter pools can be good indicators of soil quality, because
surface soil propertics are responsive to management, inherent levels of soil organic C are normal-
ized in the calculation, and high stratification ratios are uncommon under degraded conditions
{(Franzluebhers, 2002a).

The effect of tillage/disturbance on soil organic matter is not equal among the components of
organic matter. The following sections describe how tillage tmpacts total, particulate, and biolog-
ically active fractions of organic C and N,
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AGGREGATE-S1ZE DIsTRIBUTION OF QRGANIC MATTER

Organic matter is not only stratified with depth but can also be stratified three-dimensionally
according to soil aggregation. Soil disturbance results in a more uniform distribution of organic
substrates within soil (Figure 8.14). Lack of soil disturbance leads to concentration of organic
matter within soil macroaggregaics, which protect and isolate soil organic matter from consumption
by soil fauna and microorgamisms (Beare el al., 1994u, 1994b; Franzluebbers and Arshad, 1997b;
Six et al., 2000c¢), Soil disturbance with tillage breaks apart macroaggregates and allows organic
matter, once protected from decomposition, to be exposed to new environments and communities
of organisms. Mineralization of organic C following disruption of soil macroaggregates is rapid,
suggesting that this organic matter is highly labile on exposurc (Figure 8.13).

A hierarchical appreach to aggregate formation has been theorized, such that macroaggregates
(>0.25 mm) form as a result of root entanglement and polysaccharides produced by heterotrophic
microorganisms decomposing particulate organic matter glue together microaggregates {0.05 to
0.25 mm; Tisdall and Oades, 1982). A compilation of studies from the literaturc report that water-
stable macroaggregation ot surface soil is higher under no-tillage compared with inversion-tillage
systems (Table 8.4). Available data suggests that macroaggregates under no tillage have a slower
turnover time than under conventional tillage because of less physical perturbation, resulting in
macroaggregates under no tillage that are enriched in fine particulate organic matter, which is more
resistant to decomposition {Six et al., 2000b).

No tillage olten leads to an improvement in soil structure because of reduced mechanical
disturbance and greater reliance on soil organisms that deposit enriched organic debris along
permanent soil pores. However, the depth to which changes in soil aggregation occurs might be
limited, at least in the first decade. From a set of {our soils in northern Alberta and British Columbia,
the fraction of soil as water-stable macroaggregates (>0.25 mm) was higher under no tillage than
under conventional tillage to a depth of 12.5 cm, but not below this depth (Figure 8.16). Enrichment

Alberta/
Georgia Nehraska British Columbia

f [
40 b [ Conventional Tillage

No Tillage

3¢

20

10

v

Carbon in Aggregates (g- kg™

0 <D.050.050.11| 025 2 <0.050.05 | 0.25 0.25 1
W 0| to to to to o o
0.11 025 2 10 025 2 1 56

Micro  Macrc Micro Macro Micro Macro
Aggregate Size Class {mm)

FIGURE 8.14 Carbon concentration in water-stable agpregate fractions under conventional tillage and no

tillage from Georgia, Nebraska, and Alberta/British Columbia, Canada. In general, soil organic C becomes
enriched in macroaggregates (>0.25 mm} under no tillage. (Data for Georgia from Beare, M.H. et al. 1994b.
Soil Sci, Soc. Am. J. 58:777-786; for Nebraska [rom Cambardella, C.A., and Elliott, E.T. 1993, Soil Sci. Soc.
Am. J. 57:1071-1076; and for Alberta/British Columbia, Canada, from Franzluebbers, A.J., and Arshad, ML.A.,
1996¢. Can. J. Soil Sci. 76:387-393.)
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Alberta/
Georgia British Columbia
1200
Macroaggregates
® Crushed
0-5¢cm
800 - DO Intact T 3 7

600

300

Carbon Mineralization {mg-kg™")

!
0 10 20 0 10 20 30
Days of Incubation

FIGURE 8.15 Carbon mineralization during incubation of intact and crushed macroaggregates (>0.25 mm)
from different soil depths in Georgia and in Alberta/British Columbia, Canada. Labile C protected within
macroaggregates declines with soil depth. (Data for Georgia from Beare, M.H. et al, 1994b, Seil Sci. Soc.
Am. 1 58777786, and for Alberta/British Columbia, Canada, from Franzluebbers, A Y., and Arshad, M.A.
1996¢. Can. J. Soil Sci. 76:387-393)

Soil Depth {cm)

0-5 5-12.5 12.5-20
0.8
=
k=)
S o6k { 1 .
2=
23 »
e
s 2 04k T T n
Lo ®
T o
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FIGURE 8.16 Waler-stable macroaggregates from three soil depths in four soils varying in soil texture under
conventional and no tillage in Alberta/British Columbia, Canada. The positive effect of no tillage on macro-
aggregation was highest in coarse-textured soils and diminished with soil depth. (Data from Franzluebbers,
AJ., and Arshad, M.A. 1996¢. Can. J. Soif Sci. 76:387-393.)

of the soil surface with crop residucs under no tillage Jed to significantly greater macroaggregation,
especially in soils with coarse texture because their level of macroaggresation was lower than that
in soils with fine texture. Fine-textured soils have a higher inherent level of macroaggregation even
with soil disturbance because of the cohesive nature of highly rcactive clays. This higher inherent
level of aggregation can prevent further improvement with adoption of conservation tillage.
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ToraL Orcanic C anp N

Numerous reports are now available comparing the effect of conservation tillage with conventional
inversion tillage on soil organic C and N. Although estimates of soil organic C and N were not
always available at the initiation of long-term studies, refative changes in soil organic C and N

- between tillage systems can provide useful information on the fate of organic matter. Soil organic
- C in the Ap horizon (0- to 20-cm depth) of a Dark Brown Chernozemic clay loam in Alberta

A P SR e e by m

increased at 0.17 to 0.20 mg g! soil year! in two studies conducted for 9 and 19 years under no
tiflage compared with shallow disk tillage (Dormaar and Lindwall, 1989). In contrast, soil organic
C at a depth of 0 to 7.5 cm during 4 years under no tillage compared with plowing increased at
0.69 mg g soil year' on a Waukegon silt loam in Minnesota (Hansmeyer et al., [997) and at
~1.15 mg g~' soil year! on a Kamouraska clay in Quebec (Angers et al., 1993a). Incorporaticn of
residues below 7.5 cm with plowing would likely reduce this effect when considering the entire
plow depth. Soil organic C accumulation rates between these extremes have also been observed.
At a depth of 0 to 5 cm, soil organic C increased at 0.42 mg g7! soil year—' during 14 years under

 no tillage compared with muliple-disk tillage on a Norfolk loamy sand in the South Carolina

Coastal Plain (Hunt et al., 1996) and at 0.28 to (.42 mg g~ soil year during more than 20 years
under no tillage compared with plowing on a Bertie silt loam in the Maryland Coastal Plain
{(McCarty and Meisinger, 1997). On a Hoytville silty clay Joam in Ohio, soil organic C of the 0-
to 10-cm depth increased at 0.66 mg g! soil year'! during 12 years under no tillage compared with
plowing (Lal et al., 1990). The large range of changes in soil organic C with no tillage compared
with inversion tillage among the aforementioned studies can be related to differences in cropping
system, fertilization, depth of tillage tool. numerous soil characteristics, climalic conditions, and

depth of sampling.

In general, compilation studies looking at the effect of conservation tillage on soil organic

" matier indicate that soil under long-term no tillage accumulates organic C to a greater extent than

under inversion tillage (Kern and Johnson, 1991; Rasmussen and Cellins, 1991; Reicosky et al.,
1995; Paustian et al., 1997; Lal et al., 1998). The magnitude of difference between no tillage and

* conventional tillage can be as high as 2 kg m? (Dick et al., 1998), but more typical differences
¢ center around 30 g m? year”’ (Figure 8.17). There are a number of cases where the total stock of

soil organic C and N in the upper 20 to 30 cm does not change with adoption of conservation
tillage compared with conventional tillage (Carter and Rennie, 1982; Franzluebbers und Arshad,
1996¢; Angers et al., 1997; Wander et al., 1998). Although the C and N content in surface residues
are not always accounted in agricultural systems, this trash component at the soil surface can be
significant (Figure 8, 10).

Climatic factors, such as precipitation and temperature, appear to exert a great deal of control
on the potential of conservation-tillage systems to sequester more soil organic C compared with

 conventional-tillage systems (Franzluebbers and Steiner, 2002). Potential seif organic C storage

with no tillage compared with conventional tillage in North America was highest (~58 g m~ year™!)

_ in mesic, subhumid regions with mean annual precipitation-lo-potential evapotranspiration ratios

of 1.4 to 1.6 mm mm~' {Figure 8.18). Tillage comparisons in more extreme climates have often
produced estimates of potential soil organic C storage with no tillage that are no different or less
than those from under conventional tillage. For example, in the cold, semiarid climate in northern
Alberta, soil organic C was not different between tillage systems in three of four soils {Franzlucbbers
and Arshad, 1996b). No tillage generally conserves surface soil moisture compared with conven-
tional tillage. Shallow tillage in this semiarid environment incorporates residues near the soil
surface, which dries frequently and more rapidly than under no tiflage. Because soil is frozen for
nearly 5 months of the year, with the remaining time devoted to crop production and utilization of

* available water, there arc limited opportunities for decomposition to occur under either tillage

system, resulting in little change in potential soil organic C storage with tillage.
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FIGURE 8.17 Frequency distribution of 136 observations from North America on the change in soil organic
C with no tillage compared with conventional tiflage. Rate in upper left corner is mean and standard deviation
from 136 observations, (Updated from Franzluebbers, A.J., and Steiner, J.L. 2002, In Kimble, M., Lal, R.,
and Follett, R.E (Eds.), Agriculture Practices and Policies for Carbon Sequestration in Soil. CRC Press, Boca 3
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49-54; Beare, MLH. et al. 1994b. Soil Sci. Soc. Am. J. 58:777-786; Black, AL., and Tanaka, D.L. 1997. In
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CRC Press, Boca Raton, FL, pp. 335-342; Blevins, R.L. et al. 1977. Agron. J. 69:383-386; Cambardella,
C.A., and Elliott, E.T. 1992, 8oif Sci. Soc. Am. J. 56:777-783; Campbell, C.A. et al. 1995, Can. J. Soil Sci.
75:449-458; Campbell, C.A. et al. 1996. Soil Tillage Res. 37:3—14; Carter, ML.R., and Rennie, D.A. 1982 =
Can. J. Soil Sci. 62:587-597; Carter, ML.R. et al. 1988. Soil Tillage Res. 12:365-384; Cartcr, ML.R. et al. 2002.
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FIGURE 8.18 Change in soil organic C with no tillage compared with conpventional tillage in North America
as a function of macroclimatic indices. Mean monthly temperature x precipitation coefficicnt was composed
of a temperature coefficient (0} to 1; logarithmic relationship with maximum at 30°C) and a precipitation
© cuefficient (0 to 1; linear-plateau relationship with maximum at 100 mm month™'). Potentizl evapotranspiration
* was caleulated by the Thornthwaite procedure. Small circles represent individual siles and large circles
represent means of four consecutive sites in ranked climatic order. Regression paramelters are based on means.
{Updated from Franzluebbers, AL, and Steiner, J.L. 2002. In Kimble, I.M., Lal, R., and Follett, R.F.,, Eds.,
Agriculiure Practices and Policies for Carbon Sequestration in Soil. CRC Press, Boca Raton, FL, pp. 71-86.
With permission.)

Accarding to several pablished reports, the effect of tillage management on soil organic N content
i the rooting zone suggests that no tillage leads to significantly higher soil organic N content than
either plow or shallow tillage do (Table §.3). Calculated on a yearly basis, soil organic N was 2.3 +
6.7 g m~ year' higher under no tillage than under plow tillage (n = 24). Soil organic N storage with
1o tillage compared with shallow tillage was 2.8 = 7.0 g m™? year” (n = 26). Although the mean
change with adoption of no tillage compared with conventional lillage was positive among these
studies, there was a great deal of variation. This variation suggests that much more work is needed
1o understand the mechanisms behind these differences. Detailed temporal analyses within several
long-term studies would help separate random sampling variation from biogeochemical controls,
including climate, mineralogy, soil texture, cropping system, and fertilization regime.

PArRTICULATE FRACTION OF OQRGANIC MATTER

Particulate organic matter is defined as that portion of organic matier retained on a 50-um screen
following complete dispersion of soil. Particulate organic matter is considered to represent the slow
pool of organic matter (Cambardella and Elliod, 1992), with an intermediate turnover time hetween
the active and passive pools of organic matter (Parton et al., 1987). Particulate organic matter is
derived from above- and belowground inputs of plant residues. Particulate organic C is often greater
near the soil surface than at lower depths because of the dominant input from crop residues {Figure
8.19). Surface residue retention with na tillage can lead to higher particulate organic C near the
so1l surface than with inversion tillage systems (Figure 8.19). According to a compilation of studies
in the literature, particulate organic C under no titlage is greater than under either plow or shallow
tillage (Table 8.6). The effect of tillage sysiem on particulate organic N content in the surface 15
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FIGURE 8.19 Depth distribution ol particulate organic C under conventional and no tillage in Georgia, near
Settat Moroceo, and in Alberta/British Columbia, Canada. (Data for Georgia from Franzluebbers, A.J, et al.
1999, Soil Sci. Sve. Am. J. 63:349-355; for Settat Moroceo from Mrabet, R. et al. 2001. Soil Tilluge Res.
537:225-233; and for Alberta/British Columbia, Canada from Franzluebbers, A.J., and Arshad, M.A. 19974,
Soil Sci. Soc. Am. J. 61:1382-1386.)

to 30 cm s less clear (Table 8.7). Paired r-tests of the effects of no tillage comparcd with other
tillage systems on particulate organic N were not significant, although the trend was for numerically
higher values under no-tillage compared with inversion-tillage systems, similar to that found for
particulate organic C.

The decomposability of particulate organic matter does not appear to be affected by tillage man-

agement. In a set of four Cryoboralfs and Natriboralfs from Alberta and British Columbia, specific -

mineralization of particulate organic C was similar between shatlow tillage and no tillage (Franzluebbers
and Arshad, 1997a). However, the ratio of specific particulate organic C mineralization to specific
whole-soil organic C mineralization was higher under no tillage (1.3) than under shallow tillage (1.09,
suggesting that particulate organic C was of better quality (i.e., more mineralizable} under no tillage
relative to other pools of soil organic C. Mineralizable whole-soil C under no tillage was significantly
lower than under shallow tillage in two of the four soils (Franzluebbers and Arshad, 1996a, 1996b).

Density FRACTIONS OF ORGANIC MATTER

Soil organic matter can be separated by density to distinguish fractions along a decomposition gradient. -

Lightest fractions of organic matter represent recently deposited organic residues. Heaviest fractions
of organic matter represent highly decomposed organic residues that become associated with minerat
particles. Separation of light fractions from heavy fractions is typically in an unreactive salt solution
with a density of 1.6 to 1.8 Mg m>. Light tractions float to the surface, whereas heavy fractions sink
with sediment. Tillage effects on density fractions of organic matter have not been extensively
investigated. Although not different between tillage systems to a depth of 20 cm, light-fraction C
{<1.6 Mg m) and medium-fraction C (1.6 to 2.0 Mg m~) were higher under no tillage than under
plow tillage at a depth of 0-5 cm in a Typic Argiudoll in Argentina, but lower at a depth of 5-15 cm

(Alvarez et al., 1998). Heavy-traction C was unaffected by tillage management at all soil depths. In
the surtace 15 cm of Typic Haploborolls in Alberta, light-fraction C under no tillage for 8 to 16 years

averaged 242 ¢ m? and 226 g m~ under shallow tillage {Larney et al., 1997). At a depth of 0 to 15

cm, light-fraction C was [ower under no tillage than under blade cultivation in Alberta (Dormaar and
Lindwall, 1989). At the end of 5 years on a Udic Dystrochrept in New Zealand, light-fraction C was

not difterent at a depth of 0 to 5 em under ryegrass that was either plowed or direct drilled annually

(Haynes, 1999). Light-fraction C content Lo a depth of 20 cm was not statistically different in a Pachic
Haptustoll under plow tillage (174 g m?) and no tillage (196 g m™?) for 27 years (Six et al., 1998). |
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BioLocicalLy AcTive FRACTIONS OF OrGANIC MATTER

Biologically active fractions of soil organic matter are important in assessing nutrient cycling,
decomposition potential, and biophysical manipulation of soil structure. Biologically active
fractions of soil organic matter include microbial biomass, readily mineralizable C and N, and
sume chemical indices of Jabile organie substrates. All these fractions have a relatively short
turnover time and would be part of the active pool of the active—slow—passive soil organic matter
continuum (Parton et al, 1987). According to a compilation of studies from the literature,
mincralizable C and N were generally higher under no-tillage than under inversion-tillage
systems (Table 8.8 and Table 8.9}, As with other pools of organic matter, differences in
mineralizable C between tillage systems tend to be greatest nearest the soil surface (Figure 8.8).
Data in Table 8.8 were compiled from the uppermost sampling depth reported and are therefore
not necessarily representative of results that might occur summed to the surface 20 to 30 cm
of soil. Mineralizable C represents potential activity under optimum temperature and moisture
conditions. As such, it represents the lack of in sifu mincralization that might occur in the field.
Inversion tillage that stimulates microbial activity in the field leads to an exhaustion of substrates
that contribute to this mineralizable C pool.

Lack of C input to feed the heterotrophic community of soil organisms will lead to a reduction
in biologically active soil organic matter pools. When sorghum residues were removed for 6 years
from an Entic Pellustert in Australia, mineralizable C of the surface 10 cm of seil declined by an
average of 29% (Saffigna et al., 1989), Microbial biomass N in the surface 10 cm of soil was
reduced by 16 + 8% in an Udic Pellustert in Australia following 20 years of burning of wheat and
barley residues compared with residue retention (Dalal et al., 1991). During the ninth and tenth
years of a cropping system study on a Fluventic Ustochrept in Texas, mineralizable C increased
linearly with additional C input from more intensive cropping systems under both conventional
and no tillage (Figure 8.20). In this study, there was no evidence of an interaction between cropping
intensity and tillage management on the response in mineralizable C, as slopes between tillage
systems were essentially the same.

Seasonszl differences in mineralizable C can occur as a result of pulses of C inputs from
plant roots and aboveground residues. In a Fluventic Ustochrept in Texas, mineralizable C at
wheat planting was 8§9% higher under no tillage than under conventional tillage at a depth of
0-5 cm, but 12% lower at a depth of 5-12.5 cm (Figure 8.21). At wheat flowering, mineralizable
C increased in both tillage systems most notably toward the soil surface, but at all depths as a
result of accumulation of roots and rhizodeposits, which provided readily decomposable sub-
strates. Long-term tillage elfects (e, 9 years) were maintained despite seasonal changes that
occurred.

Seasonal changes in mineralizable N do not necessarily mirror seasonal changes in mineraliz-
able C, because inputs of high levels of readily decomposable substrates can fead to net immobi-
lization of N 1n the short term. In the long term, mineralizable C and N generally correspond more
directly ouce steady-state levels of organic matter quality are reached. In a Fluventic Ustochrept
in Texas, cyclical changes in mineralizable N were evident under both conventional and no tillage
in a 2-year sorghum—wheat/soybean rotation (Figure 8,22), Differences in mineralizable N between
tiflage systems occurred during approximately half of the rotation sequence, i.e., primarily during
the soybean to sorghum phases of the rotation, Mineralizable N was suppressed to equal fevels
under both tillage systems during the wheat phase, probably because of the high level of rhizodepo-
sition that occurs with the dense, fibrous root system of wheat, Roots and rhizosphere products
can be low in N concentration and high in nineralizable C, leading to significant N immohilization
(Mary ct al., [993).

Accumulation of residues at the soil surface with conservation tillage systems provides a
habitat for a variety of soil favna, which have important implications on the cyeling of organic
matter into biologically active pools (Kladivko, 2001). The most visible effect of conservation
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FIGURE 8.20 Mineralizable C as a function of C input among five cropping systems under conventional and
no tllage in southcentral Texas. (Data from Franzluebbers, AJ. et al. 1998, Soil Tillage Res. 47:303-308.)
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FIGURE 8.21 Depth distribution of mineralizable C sampled at three growth stages of wheat under conven-
tional and no tillage in southcentral Texas. * indicates significance between tillage systems at p < 0.1. (Data
from Franzluebbers, A L. et al. 1994b, Seil Biol. Biochem. 26:1469-1475.)

tillage is on earthworms. Earthworms require a moist environment with adequate organic debris,
both provided by conservation tillage. In a Typic Rhodudult in Georgia, earthworms, microar-
thropods and various macroarthropods were two- to several-fold more numerous under no tillage
than under conventional tillage as a result of the stratification of organic debris near the soil
surface (House and Parmelee, [985).
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FIGURE 8.22 Mineralizable N on a monthly basis during the ninth and tenth year under conventional and
no tillage in southcentral Texas. (Data are from 3-month running averages reported in Franzluebbers, AJ ., et
al. 1996b. Z. Pflanzenerndhr. Bodenk. 159:343-349)

SOIL ORGANIC MATTER AFFECTED BY INTERACTION
OF TILLAGE WITH CROPPING INTENSITY

Sequestration of soil organic C is dependent on the net balance between C inputs and C outputs.
Crop rotation and the intensity of cropping can affect the gquantity and quality of organic inputs.
The type of tillage management along with cropping intensity can also affect the decomposition
environment, resulting in altered C output. Comparisons of continuous wheat with wheat—fallow
rotations under shallow tillage and no tillage are most abundant in the literature. At the end of 12
years of tillage management on a Haploboroll in Saskaichewan, soil organic C at a depth of 0 to
15 cm was 0.05 kg m higher under no tillage than under shallow tillage in wheat—fallow and 0.14
kg m= higher under no tillage in continuous wheat (Campbell et al., 1995). At the end of 11 vears
on a Typic Haploborodl in Saskatchewan, soil organic C at a depth of 0 to 15 cm was 0.06 kg m™
higher under no tillage than under shaflow titlage in wheat—{allow and 0.18 kg m? higher under
no tillage in continuous wheat (Campbell et al., 1996). However, the difference in soil organic N
between no tillage and shallow tillage was similar, whether the crop rotation was wheat—fallow
(Al3 g m™) or continuous wheat (A1l g m?). At the end of 9 years on a Typic Haploboroll in
Alberta, no tillage had greater positive effects on mineralizable C and N in continuous wheat than
in wheat—fallow (Larney et al., 1997). Howcever, no tillage had greater positive effects on soil
organic C and N and light-fraction CC and N in wheat—fallow than in continuous wheat. At the end
of 6 years on a Typic Argiboroll in North Dakota, soil organic C to a depth of 30 cm was {168 kg
m~ lower under no tillage thar under conventional tillage in wheat—fallow, but 0.64 kg m higher
under no tllage in a wheat-wheat—sunflower rotation (Black and Tanaka, 1997). Soil organic N
responded similarly to soil organic C: no tillage was 52 g 2 lower in wheat-fallow and 41 g m=2
higher in wheat—wheat—sunflower. At the end of 7 years on a Torrertic Paleustol] in Texas, soil
organic C under no fillage was 0.09 kg m=* higher than under stubble-mulch tillage in wheat—fallow
and .13 kg m= higher under no tillage in continuous wheat (Jones ct al., 1997). Wheat—fallow
has been utilized in the Great Plains region of North America, where precipitation is low and
varjable, to reduce risk of crop failure by filling the soil profile with water during the fallow period.
However, precipitation use efficiency is improved with no-tiflage management such that the fallow
phase might not be economically productive compared with more intensive cropping (Peterson et
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al., 1996). In wheat-fallow, no tillage can keep the surface soil moister during the fatlow phase
such that organic matter decomposition is enhanced compared with the more extreme drying of
the surface soil with tillage.

In warm, moist climates, more intensive cropping can make better usc of environmental
conditions by producing plant biomass throughout the year. Increased cropping intensity might
increase the risk of a particular crop failure, but with extended time will likely capture more
opportunities for enhanced C input via photosynthetic fixation. At the end of 9 years on a Fluventic
Ustochrept in Texas, soil organic matter pools were always higher under no tillage than under
conventional tillage, irrespective of cropping intensity (Figure 8.23). Absolute changes in soil
organic matter pools with respect to tillage system were similar among all cropping inteunsities,
suggesting no significant interaction between tillage system and cropping intensity on soil organic
matter pools. However, the soil organic C sequestration rate per unit of estimated C input was
significantly higher under no tillage than under conventional tillage at low cropping intensities
(Tigure 8.23).

SOIL ORGANIC MATTER AFFECTED BY INTERACTION OF
TILLAGE WITH SOIL TEXTURE

Soil texture might alter the response of soil organic matter pools to tillage management by altering
plant productivity, soil moisture retention, and community structure and activity of soil organisms,
all of which could have impacts on C inputs and outputs. Irrespective of tillage management, fine-
textured soils, especially dominated by montmorillonitic ¢lays, can store higher quantities of organic
matter than can coarse-textured soils (Nichols, 1984; Hassink, 1994; Needeiman et al., 1999). In
a survey of 36 fields in [linois, whale-soil and particulate organic C and N were higher under no
tillage than under conventional tillage when sund content was <10% at a depth of 0-5 cm, but
lower under no tillage when sand content was >10% at a depth of 5-15 ¢m (Needelman ct al.,
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FIGURE 8.23 Soil organic matter pools at the end of 9 years of conventional and no tillage among five
cropping systems that formed a cropping intensity gradient in southcentral Texas. (Data from Franzluebbers,
A.J., Hons, EM., and Zuberer, D.A. 1998. Soil Tillage Res. 47:303-308.)



Tillage and Residue Management Fffects on Soil Organic Matter 261

1999). When the surface 15 cm was considered as a whole, soil and particulate organic C and N
were not affected by the interaction of tillage and texture. From a set of four soils along a textural
gradient in northern Alberta and British Columbia, tillage interacted with texture such that total,
particulate, and microbial biomass C were not different between tillage systems in soils with low
clay content, but were higher under no tillage than under conventional tillage in soils with high
clay content.

According to a compilation of tillage studies on different soils, soil organic C storage with no
tillage compared with conventional tillage was significantly higher in silty clay Joams than in loams
(Franzluebbers and Steiner, 2002). Overall, available data suggest that sequestration of soil organic
C with no tillage compared with conventional tillage within the surface rooting zone might be
higher in soils with finer texture.

SOIL ORGANIC MATTER AFFECTED BY INTERACTION
OFTILLAGE WITH CLIMATIC REGION

The climatic conditions of a region dictate to a large extent the type and sequence of crops grown.
How the crops are managed can vary to some exient, such as crop variety selection, type and
quantity of fertilization, type of pesticide applications, timing of planting, and type of tillage system
employed. In some regions, forms of conservation tillage have been employed for many years, such
as stubble-mulch tillage in the Great Plains of the U.S. or shallow blade or disk tillage in the
western wheat region of Canada. These systems have become the convention rather than the
excenption.

According 1o a compilation of tillage studies from North America, the change in soil organic
C with no tillage compared with conventional tillage was greatest when sites were located in the
mesic subhumid region with a mean annual precipitation to potential evapotranspiration ratio of
1.4 to 1.6 mum mm™' (Figure 8.18). The relationship of the change in soil organic C with climate
was not particularly strong, probably because the data were too limited to clearly separate
cropping intensity, soil textural, and other management differences that might have interacted
with climate. However, the derived shape of the response with climate is logical. Minimal benefit
of no tillage on soil organic C storage compared with conventional tillage could be expected in
dry, cold regions, because low precipitation would limit the potential of plants to fix C and limit
decomposition even when crop residucs are mixed with soil with tillage. In relatively wet, hot
regions of North America, the bepefit of no tillage on soil organic C storage compared with
conventional tillage might also be limited, because abundant precipitation combined with warm
temperature would allow surface-placed residues an ideal cnvironment for rapid decomposition,
simtlar to that with tillage. More long-term tillage studies under different soil and climatic
conditions are clearly needed to accurately understand the dynamics of soil organic matter under
the wide diversity of environments in the world.
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